World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Vapor Flux and Recrystallization During Dry Snow Metamorphism Under a Steady Temperature Gradient as Observed by Time-lapse Micro-tomography : Volume 6, Issue 3 (14/05/2012)

By Pinzer, B. R.

Click here to view

Book Id: WPLBN0004022667
Format Type: PDF Article :
File Size: Pages 42
Reproduction Date: 2015

Title: Vapor Flux and Recrystallization During Dry Snow Metamorphism Under a Steady Temperature Gradient as Observed by Time-lapse Micro-tomography : Volume 6, Issue 3 (14/05/2012)  
Author: Pinzer, B. R.
Volume: Vol. 6, Issue 3
Language: English
Subject: Science, Cryosphere, Discussions
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Pinzer, B. R., Schneebeli, M., & Kaempfer, T. U. (2012). Vapor Flux and Recrystallization During Dry Snow Metamorphism Under a Steady Temperature Gradient as Observed by Time-lapse Micro-tomography : Volume 6, Issue 3 (14/05/2012). Retrieved from

Description: WSL-Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland. Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during metamorphism under a steady temperature gradient (STGM) of 50 K m−1, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, and in addition the exact locations of these phase changes. From the four-dimensional data set, we calculated the average time that an ice volume stayed in place before it sublimated, and found a characteristic residence time of 2–3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snow pack, where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60 % of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of STGM that is produced by directly observing the microstructure of snow in situ sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow.

Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography

Flin, F. and Brzoska, J.-B.: The temperature-gradient metamorphism of snow: vapour diffusion model and application to tomographic images, Ann. Glaciol., 49, 17–21, doi:10.3189/172756408787814834, 2008.; Giddings, J. C. and LaChapelle, E.: The formation rate of depth hoar, J. Geophys. Res., 67, 2377–2383, doi:10.1029/JZ067i006p02377, 1962.; Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, doi:10.5194/acp-7-4329-2007, 2007.; Gubler, H.: Model for dry snow metamorphism by interparticle vapor flux, J. Geophys. Res., 90, 8081–8092, 1985.; Heierli, J., Gumbsch, P., and Zaiser, M.: Anticrack nucleation as triggering mechanism for snow slab avalanches, Science, 321, 240–243, doi:10.1126/science.1153948, 2008.; Hildebrand, T., Laib, A., Müller, R., Dequeker, J., and Rüegsegger, P.: Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus, J. Bone Miner. Res., 14, 1167–1174, doi:10.1359/jbmr.1999.14.7.1167, 1999.; Kaempfer, T. U. and Plapp, M.: Phase-field modeling of dry snow metamorphism, Phys. Rev. E, 79, 17, doi:10.1103/PhysRevE.79.031502, 2009.; Kaempfer, T. U. Schneebeli, M., and Sokratov, S. A.: A microstructural approach to model heat transfer in snow, Geophys. Res. Lett., 32, 1–5, doi:10.1029/2005GL023873, 2005.; Kry, P. R.: Quantitative stereological analysis of grain bonds in snow, J. Glaciol., 14, 467–477, 1975.; Kerbrat, M., Pinzer, B., Huthwelker, T., Gäggeler, H. W., Ammann, M., and Schneebeli, M.: Measuring the specific surface area of snow with X-ray tomography and gas adsorption: comparison and implications for surface smoothness, Atmos. Chem. Phys., 8, 1261–1275, doi:10.5194/acp-8-1261-2008, 2008.; Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions, Nature, 406, 611–4, doi:10.1038/35020537, 2000.; Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning Part II. Snow microstructure, Cold Reg. Sci. Technol., 35, 147–167, doi:10.1016/S0165-232X(02)00073-3, 2002.; Massman, W. J.: A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP, Atmos. Environ., 32, 1111–1127, 1998.; Miller, D. and Adams, E.: A microstructural dry-snow metamorphism model for kinetic crystal growth, J. Glaciol., 55, 1003–1011, doi:10.3189/002214309790794832, 2009.; Miller, D., Adams, E. E., and Brown, R. L.: A microstructural approach to predict dry snow metamorphism in generalized thermal conditions, Cold Reg. Sci.


Click To View

Additional Books

  • Snow Specific Surface Area Simulation Us... (by )
  • Modelling the Temperature Evolution of P... (by )
  • Comparing Ice Discharge Through West Ant... (by )
  • Tracing Glacial Disintegration from the ... (by )
  • Climate of the Greenland Ice Sheet Using... (by )
  • 27 M of Lake Ice on an Antarctic Lake Re... (by )
  • Variability of Sea Ice Deformation Rates... (by )
  • Uncertainty in Future Solid Ice Discharg... (by )
  • Brief Communication: Greenland's Shrinki... (by )
  • The Importance of a Surface Organic Laye... (by )
  • Albedo of the Ice-covered Weddell and Be... (by )
  • On Producing Sea Ice Deformation Dataset... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.